
Ghidra
An Open Source Reverse Engineering Tool

Lars A. Wallenborn

FrOSCon 2019, 10th August

How the NSA open-sourced all software in 2019



Intro



whoami

Lars A. Wallenborn
lars@wallenborn.net
@larsborn

Since 2004 IT Freelancer
2013 Diploma in Mathematics @ Uni Bonn
2014 - 2015 Software Developer in Bonn
Since 2015: Security Researcher at CrowdStrike

1



whoami

Lars A. Wallenborn
lars@wallenborn.net
@larsborn

Since 2004 IT Freelancer
2013 Diploma in Mathematics @ Uni Bonn
2014 - 2015 Software Developer in Bonn
Since 2015: Security Researcher at CrowdStrike

1



Overview

1. What is Reverse Engineering?

2. Why should I do it?

3. How do I do it?

2



What is Reverse Engineering



What is Reverse Engineering

• RE or reversing for short

• very general term: process of ”reversing” the production
process of an artificial object

• with the aim to reveal its designs, architecture, or –
generally – to extract knowledge

This Presenation
We will focus on a very specific kind of Reverse Engineering:

Binary Software Reverse Engineering

3



What is Reverse Engineering

• RE or reversing for short

• very general term:

process of ”reversing” the production
process of an artificial object

• with the aim to reveal its designs, architecture, or –
generally – to extract knowledge

This Presenation
We will focus on a very specific kind of Reverse Engineering:

Binary Software Reverse Engineering

3



What is Reverse Engineering

• RE or reversing for short

• very general term: process of ”reversing” the production
process of an artificial object

• with the aim to reveal its designs, architecture, or –
generally – to extract knowledge

This Presenation
We will focus on a very specific kind of Reverse Engineering:

Binary Software Reverse Engineering

3



What is Reverse Engineering

• RE or reversing for short

• very general term: process of ”reversing” the production
process of an artificial object

• with the aim to reveal its designs, architecture, or –
generally – to extract knowledge

This Presenation
We will focus on a very specific kind of Reverse Engineering:

Binary Software Reverse Engineering

3



What is Reverse Engineering

• RE or reversing for short

• very general term: process of ”reversing” the production
process of an artificial object

• with the aim to reveal its designs, architecture, or –
generally – to extract knowledge

This Presenation

We will focus on a very specific kind of Reverse Engineering:

Binary Software Reverse Engineering

3



What is Reverse Engineering

• RE or reversing for short

• very general term: process of ”reversing” the production
process of an artificial object

• with the aim to reveal its designs, architecture, or –
generally – to extract knowledge

This Presenation
We will focus on a very specific kind of Reverse Engineering:

Binary Software Reverse Engineering

3



Binary Software Reverse Engineering

source code binary / executable

Compilation

Reverse Engineering

4



Binary Software Reverse Engineering

source code binary / executable

Compilation

Reverse Engineering

4



Binary Software Reverse Engineering – More General

easy to read hard to read

X

Reverse Engineering

5



Why should I do it?



Motivation

• Quality Assurance

: Does it do what it is supposed to do?
• Interoperatibility: A wild undocumented binary blog

appears.
• Educational Purposes: Excuse to hack.
• Malware Analysis: Understand The Bad GuysTM.
• Exploit Development: Are there bugs? Can I exploit them

to make it behave in a way it was not intended?
• Cracking: How to circumvent copy right protection?
• Economic Espionage: How does it work with the goal to

reimplement it and then sell it.

I am not a lawyer
But this is roughly sorted by how legal I think it is. In Germany.
On a sunny day.

6



Motivation

• Quality Assurance: Does it do what it is supposed to do?

• Interoperatibility: A wild undocumented binary blog
appears.
• Educational Purposes: Excuse to hack.
• Malware Analysis: Understand The Bad GuysTM.
• Exploit Development: Are there bugs? Can I exploit them

to make it behave in a way it was not intended?
• Cracking: How to circumvent copy right protection?
• Economic Espionage: How does it work with the goal to

reimplement it and then sell it.

I am not a lawyer
But this is roughly sorted by how legal I think it is. In Germany.
On a sunny day.

6



Motivation

• Quality Assurance: Does it do what it is supposed to do?
• Interoperatibility

: A wild undocumented binary blog
appears.
• Educational Purposes: Excuse to hack.
• Malware Analysis: Understand The Bad GuysTM.
• Exploit Development: Are there bugs? Can I exploit them

to make it behave in a way it was not intended?
• Cracking: How to circumvent copy right protection?
• Economic Espionage: How does it work with the goal to

reimplement it and then sell it.

I am not a lawyer
But this is roughly sorted by how legal I think it is. In Germany.
On a sunny day.

6



Motivation

• Quality Assurance: Does it do what it is supposed to do?
• Interoperatibility: A wild undocumented binary blog

appears.

• Educational Purposes: Excuse to hack.
• Malware Analysis: Understand The Bad GuysTM.
• Exploit Development: Are there bugs? Can I exploit them

to make it behave in a way it was not intended?
• Cracking: How to circumvent copy right protection?
• Economic Espionage: How does it work with the goal to

reimplement it and then sell it.

I am not a lawyer
But this is roughly sorted by how legal I think it is. In Germany.
On a sunny day.

6



Motivation

• Quality Assurance: Does it do what it is supposed to do?
• Interoperatibility: A wild undocumented binary blog

appears.
• Educational Purposes

: Excuse to hack.
• Malware Analysis: Understand The Bad GuysTM.
• Exploit Development: Are there bugs? Can I exploit them

to make it behave in a way it was not intended?
• Cracking: How to circumvent copy right protection?
• Economic Espionage: How does it work with the goal to

reimplement it and then sell it.

I am not a lawyer
But this is roughly sorted by how legal I think it is. In Germany.
On a sunny day.

6



Motivation

• Quality Assurance: Does it do what it is supposed to do?
• Interoperatibility: A wild undocumented binary blog

appears.
• Educational Purposes: Excuse to hack.

• Malware Analysis: Understand The Bad GuysTM.
• Exploit Development: Are there bugs? Can I exploit them

to make it behave in a way it was not intended?
• Cracking: How to circumvent copy right protection?
• Economic Espionage: How does it work with the goal to

reimplement it and then sell it.

I am not a lawyer
But this is roughly sorted by how legal I think it is. In Germany.
On a sunny day.

6



Motivation

• Quality Assurance: Does it do what it is supposed to do?
• Interoperatibility: A wild undocumented binary blog

appears.
• Educational Purposes: Excuse to hack.
• Malware Analysis

: Understand The Bad GuysTM.
• Exploit Development: Are there bugs? Can I exploit them

to make it behave in a way it was not intended?
• Cracking: How to circumvent copy right protection?
• Economic Espionage: How does it work with the goal to

reimplement it and then sell it.

I am not a lawyer
But this is roughly sorted by how legal I think it is. In Germany.
On a sunny day.

6



Motivation

• Quality Assurance: Does it do what it is supposed to do?
• Interoperatibility: A wild undocumented binary blog

appears.
• Educational Purposes: Excuse to hack.
• Malware Analysis: Understand The Bad GuysTM.

• Exploit Development: Are there bugs? Can I exploit them
to make it behave in a way it was not intended?
• Cracking: How to circumvent copy right protection?
• Economic Espionage: How does it work with the goal to

reimplement it and then sell it.

I am not a lawyer
But this is roughly sorted by how legal I think it is. In Germany.
On a sunny day.

6



Motivation

• Quality Assurance: Does it do what it is supposed to do?
• Interoperatibility: A wild undocumented binary blog

appears.
• Educational Purposes: Excuse to hack.
• Malware Analysis: Understand The Bad GuysTM.
• Exploit Development

: Are there bugs? Can I exploit them
to make it behave in a way it was not intended?
• Cracking: How to circumvent copy right protection?
• Economic Espionage: How does it work with the goal to

reimplement it and then sell it.

I am not a lawyer
But this is roughly sorted by how legal I think it is. In Germany.
On a sunny day.

6



Motivation

• Quality Assurance: Does it do what it is supposed to do?
• Interoperatibility: A wild undocumented binary blog

appears.
• Educational Purposes: Excuse to hack.
• Malware Analysis: Understand The Bad GuysTM.
• Exploit Development: Are there bugs? Can I exploit them

to make it behave in a way it was not intended?

• Cracking: How to circumvent copy right protection?
• Economic Espionage: How does it work with the goal to

reimplement it and then sell it.

I am not a lawyer
But this is roughly sorted by how legal I think it is. In Germany.
On a sunny day.

6



Motivation

• Quality Assurance: Does it do what it is supposed to do?
• Interoperatibility: A wild undocumented binary blog

appears.
• Educational Purposes: Excuse to hack.
• Malware Analysis: Understand The Bad GuysTM.
• Exploit Development: Are there bugs? Can I exploit them

to make it behave in a way it was not intended?
• Cracking

: How to circumvent copy right protection?
• Economic Espionage: How does it work with the goal to

reimplement it and then sell it.

I am not a lawyer
But this is roughly sorted by how legal I think it is. In Germany.
On a sunny day.

6



Motivation

• Quality Assurance: Does it do what it is supposed to do?
• Interoperatibility: A wild undocumented binary blog

appears.
• Educational Purposes: Excuse to hack.
• Malware Analysis: Understand The Bad GuysTM.
• Exploit Development: Are there bugs? Can I exploit them

to make it behave in a way it was not intended?
• Cracking: How to circumvent copy right protection?

• Economic Espionage: How does it work with the goal to
reimplement it and then sell it.

I am not a lawyer
But this is roughly sorted by how legal I think it is. In Germany.
On a sunny day.

6



Motivation

• Quality Assurance: Does it do what it is supposed to do?
• Interoperatibility: A wild undocumented binary blog

appears.
• Educational Purposes: Excuse to hack.
• Malware Analysis: Understand The Bad GuysTM.
• Exploit Development: Are there bugs? Can I exploit them

to make it behave in a way it was not intended?
• Cracking: How to circumvent copy right protection?
• Economic Espionage

: How does it work with the goal to
reimplement it and then sell it.

I am not a lawyer
But this is roughly sorted by how legal I think it is. In Germany.
On a sunny day.

6



Motivation

• Quality Assurance: Does it do what it is supposed to do?
• Interoperatibility: A wild undocumented binary blog

appears.
• Educational Purposes: Excuse to hack.
• Malware Analysis: Understand The Bad GuysTM.
• Exploit Development: Are there bugs? Can I exploit them

to make it behave in a way it was not intended?
• Cracking: How to circumvent copy right protection?
• Economic Espionage: How does it work with the goal to

reimplement it and then sell it.

I am not a lawyer
But this is roughly sorted by how legal I think it is. In Germany.
On a sunny day.

6



Motivation

• Quality Assurance: Does it do what it is supposed to do?
• Interoperatibility: A wild undocumented binary blog

appears.
• Educational Purposes: Excuse to hack.
• Malware Analysis: Understand The Bad GuysTM.
• Exploit Development: Are there bugs? Can I exploit them

to make it behave in a way it was not intended?
• Cracking: How to circumvent copy right protection?
• Economic Espionage: How does it work with the goal to

reimplement it and then sell it.

I am not a lawyer

But this is roughly sorted by how legal I think it is. In Germany.
On a sunny day.

6



Motivation

• Quality Assurance: Does it do what it is supposed to do?
• Interoperatibility: A wild undocumented binary blog

appears.
• Educational Purposes: Excuse to hack.
• Malware Analysis: Understand The Bad GuysTM.
• Exploit Development: Are there bugs? Can I exploit them

to make it behave in a way it was not intended?
• Cracking: How to circumvent copy right protection?
• Economic Espionage: How does it work with the goal to

reimplement it and then sell it.

I am not a lawyer
But this is roughly sorted by how legal I think it is.

In Germany.
On a sunny day.

6



Motivation

• Quality Assurance: Does it do what it is supposed to do?
• Interoperatibility: A wild undocumented binary blog

appears.
• Educational Purposes: Excuse to hack.
• Malware Analysis: Understand The Bad GuysTM.
• Exploit Development: Are there bugs? Can I exploit them

to make it behave in a way it was not intended?
• Cracking: How to circumvent copy right protection?
• Economic Espionage: How does it work with the goal to

reimplement it and then sell it.

I am not a lawyer
But this is roughly sorted by how legal I think it is. In Germany.

On a sunny day.

6



Motivation

• Quality Assurance: Does it do what it is supposed to do?
• Interoperatibility: A wild undocumented binary blog

appears.
• Educational Purposes: Excuse to hack.
• Malware Analysis: Understand The Bad GuysTM.
• Exploit Development: Are there bugs? Can I exploit them

to make it behave in a way it was not intended?
• Cracking: How to circumvent copy right protection?
• Economic Espionage: How does it work with the goal to

reimplement it and then sell it.

I am not a lawyer
But this is roughly sorted by how legal I think it is. In Germany.
On a sunny day.

6



How do I do it?



Show me an Example!

#include <stdio.h>

int main() {

printf("Hallo FrOSCon!");

return 0;

}

7



Show me an Example!

#include <stdio.h>

int main() {

printf("Hallo FrOSCon!");

return 0;

}

7



Compile it!

Compile C program to a binary.

gcc main.c

strip a.exe

8



Compile it!

Compile C program to a binary.

gcc main.c

strip a.exe

8



strings Based Reversing

Demo

9



What can we deduce already?

• !This program cannot be run in DOS mode.

⇒ It probably is a Windows executable.

• Hallo FrOSCon!

⇒ suggests that this is a ”hello world program”.

• Mingw-w64 runtime failure:

⇒ probably compiled with MinGW (Minimalist GNU for
Windows).

Too many “probably”s and “suggests”s?
Due to time constraints while reversing, you often have to find a
balance between speed and confidence.

10



What can we deduce already?

• !This program cannot be run in DOS mode.

⇒ It probably is a Windows executable.

• Hallo FrOSCon!

⇒ suggests that this is a ”hello world program”.

• Mingw-w64 runtime failure:

⇒ probably compiled with MinGW (Minimalist GNU for
Windows).

Too many “probably”s and “suggests”s?
Due to time constraints while reversing, you often have to find a
balance between speed and confidence.

10



What can we deduce already?

• !This program cannot be run in DOS mode.

⇒ It probably is a Windows executable.

• Hallo FrOSCon!

⇒ suggests that this is a ”hello world program”.

• Mingw-w64 runtime failure:

⇒ probably compiled with MinGW (Minimalist GNU for
Windows).

Too many “probably”s and “suggests”s?
Due to time constraints while reversing, you often have to find a
balance between speed and confidence.

10



What can we deduce already?

• !This program cannot be run in DOS mode.

⇒ It probably is a Windows executable.

• Hallo FrOSCon!

⇒ suggests that this is a ”hello world program”.

• Mingw-w64 runtime failure:

⇒ probably compiled with MinGW (Minimalist GNU for
Windows).

Too many “probably”s and “suggests”s?
Due to time constraints while reversing, you often have to find a
balance between speed and confidence.

10



What can we deduce already?

• !This program cannot be run in DOS mode.

⇒ It probably is a Windows executable.

• Hallo FrOSCon!

⇒ suggests that this is a ”hello world program”.

• Mingw-w64 runtime failure:

⇒ probably compiled with MinGW (Minimalist GNU for
Windows).

Too many “probably”s and “suggests”s?
Due to time constraints while reversing, you often have to find a
balance between speed and confidence.

10



What can we deduce already?

• !This program cannot be run in DOS mode.

⇒ It probably is a Windows executable.

• Hallo FrOSCon!

⇒ suggests that this is a ”hello world program”.

• Mingw-w64 runtime failure:

⇒ probably compiled with MinGW (Minimalist GNU for
Windows).

Too many “probably”s and “suggests”s?
Due to time constraints while reversing, you often have to find a
balance between speed and confidence.

10



What can we deduce already?

• !This program cannot be run in DOS mode.

⇒ It probably is a Windows executable.

• Hallo FrOSCon!

⇒ suggests that this is a ”hello world program”.

• Mingw-w64 runtime failure:

⇒ probably compiled with MinGW (Minimalist GNU for
Windows).

Too many “probably”s and “suggests”s?
Due to time constraints while reversing, you often have to find a
balance between speed and confidence.

10



What can we deduce already?

• !This program cannot be run in DOS mode.

⇒ It probably is a Windows executable.

• Hallo FrOSCon!

⇒ suggests that this is a ”hello world program”.

• Mingw-w64 runtime failure:

⇒ probably compiled with MinGW (Minimalist GNU for
Windows).

Too many “probably”s and “suggests”s?

Due to time constraints while reversing, you often have to find a
balance between speed and confidence.

10



What can we deduce already?

• !This program cannot be run in DOS mode.

⇒ It probably is a Windows executable.

• Hallo FrOSCon!

⇒ suggests that this is a ”hello world program”.

• Mingw-w64 runtime failure:

⇒ probably compiled with MinGW (Minimalist GNU for
Windows).

Too many “probably”s and “suggests”s?
Due to time constraints while reversing, you often have to find a
balance between speed and confidence.

10



Overview

1. What is Reverse Engineering?

2. Why should I do it?
3. How do I do it?

3.1 Static vs. Dynamic Reverse Engineering
3.2 Executable Formats
3.3 Assembly
3.4 Tools
3.5 How to get started with Ghidra?

11



Overview

1. What is Reverse Engineering?

2. Why should I do it?
3. How do I do it?

3.1 Static vs. Dynamic Reverse Engineering
3.2 Executable Formats
3.3 Assembly
3.4 Tools
3.5 How to get started with Ghidra?

11



Static vs. Dynamic Reverse
Engineering



Static vs. Dynamic Reverse Engineering

Definition: Dynamic Reversing
Dynamic software reverse engineering is the analysis of
computer software that is performed by executing programs on
a real or virtual processor.

Definition: Static Reversing
Static software reverse engineering is the analysis of computer
software that is performed without actually executing the target
program.

12



Static vs. Dynamic Reverse Engineering

Definition: Dynamic Reversing
Dynamic software reverse engineering is the analysis of
computer software that is performed by executing programs on
a real or virtual processor.

Definition: Static Reversing
Static software reverse engineering is the analysis of computer
software that is performed without actually executing the target
program.

12



Static vs. Dynamic Reverse Engineering

Definition: Dynamic Reversing
Dynamic software reverse engineering is the analysis of
computer software that is performed by executing programs on
a real or virtual processor.

Definition: Static Reversing
Static software reverse engineering is the analysis of computer
software that is performed without actually executing the target
program.

12



Executable Formats



Executable Formats

• Depends on operating system

. We will focus on Windows.

• Windows uses the Portable Executable (PE) format.

• RE techniques heavily depend on the used programming
language. C, C++, Delphi, Go, .NET . . .

• Focus on ”native” PE files, i.e. files that are ”normal”
Windows executables.

13



Executable Formats

• Depends on operating system. We will focus on Windows.

• Windows uses the Portable Executable (PE) format.

• RE techniques heavily depend on the used programming
language. C, C++, Delphi, Go, .NET . . .

• Focus on ”native” PE files, i.e. files that are ”normal”
Windows executables.

13



Executable Formats

• Depends on operating system. We will focus on Windows.

• Windows uses the Portable Executable (PE) format.

• RE techniques heavily depend on the used programming
language. C, C++, Delphi, Go, .NET . . .

• Focus on ”native” PE files, i.e. files that are ”normal”
Windows executables.

13



Executable Formats

• Depends on operating system. We will focus on Windows.

• Windows uses the Portable Executable (PE) format.

• RE techniques heavily depend on the used programming
language. C, C++, Delphi, Go, .NET . . .

• Focus on ”native” PE files, i.e. files that are ”normal”
Windows executables.

13



Executable Formats

• Depends on operating system. We will focus on Windows.

• Windows uses the Portable Executable (PE) format.

• RE techniques heavily depend on the used programming
language. C, C++, Delphi, Go, .NET . . .

• Focus on ”native” PE files, i.e. files that are ”normal”
Windows executables.

13



PE files

• PE files contain so-called sections.

• Named like .text, .data, .rdata or .bss.

• When the program is executed, the so-called PE loader
copies the content of these sections to different regions in
memory.

• Then, execution is handed over to the so-called entry point
within the .text section.

14



PE files

• PE files contain so-called sections.

• Named like .text, .data, .rdata or .bss.

• When the program is executed, the so-called PE loader
copies the content of these sections to different regions in
memory.

• Then, execution is handed over to the so-called entry point
within the .text section.

14



PE files

• PE files contain so-called sections.

• Named like .text, .data, .rdata or .bss.

• When the program is executed, the so-called PE loader
copies the content of these sections to different regions in
memory.

• Then, execution is handed over to the so-called entry point
within the .text section.

14



PE files

• PE files contain so-called sections.

• Named like .text, .data, .rdata or .bss.

• When the program is executed, the so-called PE loader
copies the content of these sections to different regions in
memory.

• Then, execution is handed over to the so-called entry point
within the .text section.

14



PE files

• PE files contain so-called sections.

• Named like .text, .data, .rdata or .bss.

• When the program is executed, the so-called PE loader
copies the content of these sections to different regions in
memory.

• Then, execution is handed over to the so-called entry point
within the .text section.

14



Assembly



Assembly

• Low-Level language executed by the CPU.

• Only able to do very basic things.

• Central concepts: Registers, Stack, Functions.

• Often shown in disassembled state: Instead of

4881ec98000000

we see

SUB RSP, 0x98

15



Assembly

• Low-Level language executed by the CPU.

• Only able to do very basic things.

• Central concepts: Registers, Stack, Functions.

• Often shown in disassembled state: Instead of

4881ec98000000

we see

SUB RSP, 0x98

15



Assembly

• Low-Level language executed by the CPU.

• Only able to do very basic things.

• Central concepts: Registers, Stack, Functions.

• Often shown in disassembled state: Instead of

4881ec98000000

we see

SUB RSP, 0x98

15



Assembly

• Low-Level language executed by the CPU.

• Only able to do very basic things.

• Central concepts: Registers, Stack, Functions.

• Often shown in disassembled state: Instead of

4881ec98000000

we see

SUB RSP, 0x98

15



Assembly

• Low-Level language executed by the CPU.

• Only able to do very basic things.

• Central concepts: Registers, Stack, Functions.

• Often shown in disassembled state

: Instead of

4881ec98000000

we see

SUB RSP, 0x98

15



Assembly

• Low-Level language executed by the CPU.

• Only able to do very basic things.

• Central concepts: Registers, Stack, Functions.

• Often shown in disassembled state: Instead of

4881ec98000000

we see

SUB RSP, 0x98

15



Assembly

• Low-Level language executed by the CPU.

• Only able to do very basic things.

• Central concepts: Registers, Stack, Functions.

• Often shown in disassembled state: Instead of

4881ec98000000

we see

SUB RSP, 0x98

15



Tools



Tools

• IDA (Interactive Disassembler) + HexRays Decompiler

• Binary Ninja

• RetDec (retargetable decompiler)

• Ghidra

16



Tools

• IDA

(Interactive Disassembler) + HexRays Decompiler

• Binary Ninja

• RetDec (retargetable decompiler)

• Ghidra

16



Tools

• IDA (Interactive Disassembler)

+ HexRays Decompiler

• Binary Ninja

• RetDec (retargetable decompiler)

• Ghidra

16



Tools

• IDA (Interactive Disassembler) + HexRays Decompiler

• Binary Ninja

• RetDec (retargetable decompiler)

• Ghidra

16



Tools

• IDA (Interactive Disassembler) + HexRays Decompiler

• Binary Ninja

• RetDec (retargetable decompiler)

• Ghidra

16



Tools

• IDA (Interactive Disassembler) + HexRays Decompiler

• Binary Ninja

• RetDec

(retargetable decompiler)

• Ghidra

16



Tools

• IDA (Interactive Disassembler) + HexRays Decompiler

• Binary Ninja

• RetDec (retargetable decompiler)

• Ghidra

16



Tools

• IDA (Interactive Disassembler) + HexRays Decompiler

• Binary Ninja

• RetDec (retargetable decompiler)

• Ghidra

16



Ghidra



What is Ghidra?

• Existence is publicly known since the Vault7 leaks in 2017.

• At the RSA security conference 2019, the NSA announced
to release it as open source software.

• Really did so in the following months.

• JAVA-based GUI, backend written in C.

• Capable of decompiling native PEs

• (und many other formats)

17



What is Ghidra?

• Existence is publicly known since the Vault7 leaks in 2017.

• At the RSA security conference 2019, the NSA announced
to release it as open source software.

• Really did so in the following months.

• JAVA-based GUI, backend written in C.

• Capable of decompiling native PEs

• (und many other formats)

17



What is Ghidra?

• Existence is publicly known since the Vault7 leaks in 2017.

• At the RSA security conference 2019, the NSA announced
to release it as open source software.

• Really did so in the following months.

• JAVA-based GUI, backend written in C.

• Capable of decompiling native PEs

• (und many other formats)

17



What is Ghidra?

• Existence is publicly known since the Vault7 leaks in 2017.

• At the RSA security conference 2019, the NSA announced
to release it as open source software.

• Really did so in the following months.

• JAVA-based GUI, backend written in C.

• Capable of decompiling native PEs

• (und many other formats)

17



What is Ghidra?

• Existence is publicly known since the Vault7 leaks in 2017.

• At the RSA security conference 2019, the NSA announced
to release it as open source software.

• Really did so in the following months.

• JAVA-based GUI, backend written in C.

• Capable of

decompiling native PEs

• (und many other formats)

17



What is Ghidra?

• Existence is publicly known since the Vault7 leaks in 2017.

• At the RSA security conference 2019, the NSA announced
to release it as open source software.

• Really did so in the following months.

• JAVA-based GUI, backend written in C.

• Capable of decompiling native PEs

• (und many other formats)

17



What is Ghidra?

• Existence is publicly known since the Vault7 leaks in 2017.

• At the RSA security conference 2019, the NSA announced
to release it as open source software.

• Really did so in the following months.

• JAVA-based GUI, backend written in C.

• Capable of decompiling native PEs

• (und many other formats)

17



What can Ghidra do?

• Import executables and disassemble them

• Decompile the assembly and display pseudo code (C-like)

• Guess variable and function names when possible

• Allow some basic refactoring similar to an integrated
development environment (IDE)

18



What can Ghidra do?

• Import executables and disassemble them

• Decompile the assembly and display pseudo code (C-like)

• Guess variable and function names when possible

• Allow some basic refactoring similar to an integrated
development environment (IDE)

18



What can Ghidra do?

• Import executables and disassemble them

• Decompile the assembly and display pseudo code (C-like)

• Guess variable and function names when possible

• Allow some basic refactoring similar to an integrated
development environment (IDE)

18



What can Ghidra do?

• Import executables and disassemble them

• Decompile the assembly and display pseudo code (C-like)

• Guess variable and function names when possible

• Allow some basic refactoring similar to an integrated
development environment (IDE)

18



What can Ghidra do?

• Import executables and disassemble them

• Decompile the assembly and display pseudo code (C-like)

• Guess variable and function names when possible

• Allow some basic refactoring similar to an integrated
development environment (IDE)

18



How do I use it?

Demo

19



Thank You

Lars A. Wallenborn
lars@wallenborn.net
@larsborn

Some advertisement: I will give Reverse Engineering classes
soon. If you are interested, talk to me or sent me an email!

Questions?

20



Thank You

Lars A. Wallenborn
lars@wallenborn.net
@larsborn

Some advertisement: I will give Reverse Engineering classes
soon. If you are interested, talk to me or sent me an email!

Questions?

20



Appendix: Static vs. Dynamic RE
Comparison



Static vs. Dynamic Comparison Comparison

Static Analyis Dynamic Analyis

timeconsuming evasion techniques (arms race)
resource intensive (humans) resource intensive (computers)
not fool-prove not fool-prove

Conclusion
A combined approach is the best of course.
We will focus on static analysis here.

21



Static vs. Dynamic Comparison Comparison

Static Analyis Dynamic Analyis

timeconsuming evasion techniques (arms race)
resource intensive (humans) resource intensive (computers)
not fool-prove not fool-prove

Conclusion
A combined approach is the best of course.
We will focus on static analysis here.

21



Static vs. Dynamic Comparison Comparison

Static Analyis Dynamic Analyis
timeconsuming

evasion techniques (arms race)
resource intensive (humans) resource intensive (computers)
not fool-prove not fool-prove

Conclusion
A combined approach is the best of course.
We will focus on static analysis here.

21



Static vs. Dynamic Comparison Comparison

Static Analyis Dynamic Analyis
timeconsuming

evasion techniques (arms race)

resource intensive (humans)

resource intensive (computers)
not fool-prove not fool-prove

Conclusion
A combined approach is the best of course.
We will focus on static analysis here.

21



Static vs. Dynamic Comparison Comparison

Static Analyis Dynamic Analyis
timeconsuming

evasion techniques (arms race)

resource intensive (humans)

resource intensive (computers)

not fool-prove

not fool-prove

Conclusion
A combined approach is the best of course.
We will focus on static analysis here.

21



Static vs. Dynamic Comparison Comparison

Static Analyis Dynamic Analyis
timeconsuming evasion techniques (arms race)
resource intensive (humans)

resource intensive (computers)

not fool-prove

not fool-prove

Conclusion
A combined approach is the best of course.
We will focus on static analysis here.

21



Static vs. Dynamic Comparison Comparison

Static Analyis Dynamic Analyis
timeconsuming evasion techniques (arms race)
resource intensive (humans) resource intensive (computers)
not fool-prove

not fool-prove

Conclusion
A combined approach is the best of course.
We will focus on static analysis here.

21



Static vs. Dynamic Comparison Comparison

Static Analyis Dynamic Analyis
timeconsuming evasion techniques (arms race)
resource intensive (humans) resource intensive (computers)
not fool-prove not fool-prove

Conclusion
A combined approach is the best of course.
We will focus on static analysis here.

21



Static vs. Dynamic Comparison Comparison

Static Analyis Dynamic Analyis
timeconsuming evasion techniques (arms race)
resource intensive (humans) resource intensive (computers)
not fool-prove not fool-prove

Conclusion
A combined approach is the best of course.
We will focus on static analysis here.

21



Appendix: Assembly



Assembly: Registers

• There are around 16 registers in a 64-bit CPU.
• Named like RAX, RBP or R8.
• Each register can store 64 bit of data.
• They are extremly fast (even compared to RAM).
• Example:

MOV RAX, 0x12

SUB RAX, 0x8

ADD RAX, 0x4

• Each instructions is made up of a mnemonic and
(optionally) arguments.
• Depending on how you count there are between 1000 and

4000 assembly instructions.

22



Assembly: Registers

• There are around 16 registers in a 64-bit CPU.

• Named like RAX, RBP or R8.
• Each register can store 64 bit of data.
• They are extremly fast (even compared to RAM).
• Example:

MOV RAX, 0x12

SUB RAX, 0x8

ADD RAX, 0x4

• Each instructions is made up of a mnemonic and
(optionally) arguments.
• Depending on how you count there are between 1000 and

4000 assembly instructions.

22



Assembly: Registers

• There are around 16 registers in a 64-bit CPU.
• Named like RAX, RBP or R8.

• Each register can store 64 bit of data.
• They are extremly fast (even compared to RAM).
• Example:

MOV RAX, 0x12

SUB RAX, 0x8

ADD RAX, 0x4

• Each instructions is made up of a mnemonic and
(optionally) arguments.
• Depending on how you count there are between 1000 and

4000 assembly instructions.

22



Assembly: Registers

• There are around 16 registers in a 64-bit CPU.
• Named like RAX, RBP or R8.
• Each register can store 64 bit of data.

• They are extremly fast (even compared to RAM).
• Example:

MOV RAX, 0x12

SUB RAX, 0x8

ADD RAX, 0x4

• Each instructions is made up of a mnemonic and
(optionally) arguments.
• Depending on how you count there are between 1000 and

4000 assembly instructions.

22



Assembly: Registers

• There are around 16 registers in a 64-bit CPU.
• Named like RAX, RBP or R8.
• Each register can store 64 bit of data.
• They are extremly fast (even compared to RAM).

• Example:

MOV RAX, 0x12

SUB RAX, 0x8

ADD RAX, 0x4

• Each instructions is made up of a mnemonic and
(optionally) arguments.
• Depending on how you count there are between 1000 and

4000 assembly instructions.

22



Assembly: Registers

• There are around 16 registers in a 64-bit CPU.
• Named like RAX, RBP or R8.
• Each register can store 64 bit of data.
• They are extremly fast (even compared to RAM).
• Example:

MOV RAX, 0x12

SUB RAX, 0x8

ADD RAX, 0x4

• Each instructions is made up of a mnemonic and
(optionally) arguments.
• Depending on how you count there are between 1000 and

4000 assembly instructions.

22



Assembly: Registers

• There are around 16 registers in a 64-bit CPU.
• Named like RAX, RBP or R8.
• Each register can store 64 bit of data.
• They are extremly fast (even compared to RAM).
• Example:

MOV RAX, 0x12

SUB RAX, 0x8

ADD RAX, 0x4

• Each instructions is made up of a mnemonic and
(optionally) arguments.
• Depending on how you count there are between 1000 and

4000 assembly instructions.

22



Assembly: Registers

• There are around 16 registers in a 64-bit CPU.
• Named like RAX, RBP or R8.
• Each register can store 64 bit of data.
• They are extremly fast (even compared to RAM).
• Example:

MOV RAX, 0x12

SUB RAX, 0x8

ADD RAX, 0x4

• Each instructions is made up of a mnemonic and
(optionally) arguments.

• Depending on how you count there are between 1000 and
4000 assembly instructions.

22



Assembly: Registers

• There are around 16 registers in a 64-bit CPU.
• Named like RAX, RBP or R8.
• Each register can store 64 bit of data.
• They are extremly fast (even compared to RAM).
• Example:

MOV RAX, 0x12

SUB RAX, 0x8

ADD RAX, 0x4

• Each instructions is made up of a mnemonic and
(optionally) arguments.
• Depending on how you count there are between 1000 and

4000 assembly instructions.

22



Assembly: Instruction Pointer

• There is a very special register: RIP.

• It stores the address of the next assembly command that
should be executed by the CPU.

• Yes, the program lives in the same space as the data.

• This is the cause of many problems we have with
computers nowadays.

23



Assembly: Instruction Pointer

• There is a very special register: RIP.

• It stores the address of the next assembly command that
should be executed by the CPU.

• Yes, the program lives in the same space as the data.

• This is the cause of many problems we have with
computers nowadays.

23



Assembly: Instruction Pointer

• There is a very special register: RIP.

• It stores the address of the next assembly command that
should be executed by the CPU.

• Yes, the program lives in the same space as the data.

• This is the cause of many problems we have with
computers nowadays.

23



Assembly: Instruction Pointer

• There is a very special register: RIP.

• It stores the address of the next assembly command that
should be executed by the CPU.

• Yes, the program lives in the same space as the data.

• This is the cause of many problems we have with
computers nowadays.

23



Assembly: Instruction Pointer

• There is a very special register: RIP.

• It stores the address of the next assembly command that
should be executed by the CPU.

• Yes, the program lives in the same space as the data.

• This is the cause of many problems we have with
computers nowadays.

23



Assembly: Instruction Pointer

• There is a very special register: RIP.

• It stores the address of the next assembly command that
should be executed by the CPU.

• Yes, the program lives in the same space as the data.

• This is the cause of many problems we have with
computers nowadays.

23



Assembly: Stack

• Central datastructure.

• Resides in RAM.

• Literally a stack.

• PUSH and POP can be used to manipulate it.

• Registers RSP and RBP store its location.

• Example:

PUSH RBX

PUSH 0x98

POP RBX

24



Assembly: Stack

• Central datastructure.

• Resides in RAM.

• Literally a stack.

• PUSH and POP can be used to manipulate it.

• Registers RSP and RBP store its location.

• Example:

PUSH RBX

PUSH 0x98

POP RBX

24



Assembly: Stack

• Central datastructure.

• Resides in RAM.

• Literally a stack.

• PUSH and POP can be used to manipulate it.

• Registers RSP and RBP store its location.

• Example:

PUSH RBX

PUSH 0x98

POP RBX

24



Assembly: Stack

• Central datastructure.

• Resides in RAM.

• Literally a stack.

• PUSH and POP can be used to manipulate it.

• Registers RSP and RBP store its location.

• Example:

PUSH RBX

PUSH 0x98

POP RBX

24



Assembly: Stack

• Central datastructure.

• Resides in RAM.

• Literally a stack.

• PUSH and POP can be used to manipulate it.

• Registers RSP and RBP store its location.

• Example:

PUSH RBX

PUSH 0x98

POP RBX

24



Assembly: Stack

• Central datastructure.

• Resides in RAM.

• Literally a stack.

• PUSH and POP can be used to manipulate it.

• Registers RSP and RBP store its location.

• Example:

PUSH RBX

PUSH 0x98

POP RBX

24



Assembly: Stack

• Central datastructure.

• Resides in RAM.

• Literally a stack.

• PUSH and POP can be used to manipulate it.

• Registers RSP and RBP store its location.

• Example:

PUSH RBX

PUSH 0x98

POP RBX

24



Assembly: Stack

• Central datastructure.

• Resides in RAM.

• Literally a stack.

• PUSH and POP can be used to manipulate it.

• Registers RSP and RBP store its location.

• Example:

PUSH RBX

PUSH 0x98

POP RBX

24



Assembly: Functions

• Often functions in C are compiled to functions in assembly.
• CALL and RET are the responsible mnemonics.
• Example:

CALL f5 15 00 00

CALL printf

RET

• CALL pushes EIP to the stack
• And then sets its value to the given argument
• Effectively continuing execution in the function
• RET does the inverse.
• This allow arbitrarily deeply nested calls.

25



Assembly: Functions

• Often functions in C are compiled to functions in assembly.

• CALL and RET are the responsible mnemonics.
• Example:

CALL f5 15 00 00

CALL printf

RET

• CALL pushes EIP to the stack
• And then sets its value to the given argument
• Effectively continuing execution in the function
• RET does the inverse.
• This allow arbitrarily deeply nested calls.

25



Assembly: Functions

• Often functions in C are compiled to functions in assembly.
• CALL and RET are the responsible mnemonics.

• Example:

CALL f5 15 00 00

CALL printf

RET

• CALL pushes EIP to the stack
• And then sets its value to the given argument
• Effectively continuing execution in the function
• RET does the inverse.
• This allow arbitrarily deeply nested calls.

25



Assembly: Functions

• Often functions in C are compiled to functions in assembly.
• CALL and RET are the responsible mnemonics.
• Example:

CALL f5 15 00 00

CALL printf

RET

• CALL pushes EIP to the stack
• And then sets its value to the given argument
• Effectively continuing execution in the function
• RET does the inverse.
• This allow arbitrarily deeply nested calls.

25



Assembly: Functions

• Often functions in C are compiled to functions in assembly.
• CALL and RET are the responsible mnemonics.
• Example:

CALL f5 15 00 00

CALL printf

RET

• CALL pushes EIP to the stack
• And then sets its value to the given argument
• Effectively continuing execution in the function
• RET does the inverse.
• This allow arbitrarily deeply nested calls.

25



Assembly: Functions

• Often functions in C are compiled to functions in assembly.
• CALL and RET are the responsible mnemonics.
• Example:

CALL f5 15 00 00

CALL printf

RET

• CALL pushes EIP to the stack

• And then sets its value to the given argument
• Effectively continuing execution in the function
• RET does the inverse.
• This allow arbitrarily deeply nested calls.

25



Assembly: Functions

• Often functions in C are compiled to functions in assembly.
• CALL and RET are the responsible mnemonics.
• Example:

CALL f5 15 00 00

CALL printf

RET

• CALL pushes EIP to the stack
• And then sets its value to the given argument

• Effectively continuing execution in the function
• RET does the inverse.
• This allow arbitrarily deeply nested calls.

25



Assembly: Functions

• Often functions in C are compiled to functions in assembly.
• CALL and RET are the responsible mnemonics.
• Example:

CALL f5 15 00 00

CALL printf

RET

• CALL pushes EIP to the stack
• And then sets its value to the given argument
• Effectively continuing execution in the function

• RET does the inverse.
• This allow arbitrarily deeply nested calls.

25



Assembly: Functions

• Often functions in C are compiled to functions in assembly.
• CALL and RET are the responsible mnemonics.
• Example:

CALL f5 15 00 00

CALL printf

RET

• CALL pushes EIP to the stack
• And then sets its value to the given argument
• Effectively continuing execution in the function
• RET does the inverse.

• This allow arbitrarily deeply nested calls.

25



Assembly: Functions

• Often functions in C are compiled to functions in assembly.
• CALL and RET are the responsible mnemonics.
• Example:

CALL f5 15 00 00

CALL printf

RET

• CALL pushes EIP to the stack
• And then sets its value to the given argument
• Effectively continuing execution in the function
• RET does the inverse.
• This allow arbitrarily deeply nested calls.

25


	Intro
	What is Reverse Engineering
	Why should I do it?
	How do I do it?
	Static vs. Dynamic Reverse Engineering
	Executable Formats
	Assembly
	Tools
	Ghidra
	Appendix: Static vs. Dynamic RE Comparison
	Appendix: Assembly

